Table 1. Debye--Scherrer diagram of $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$

h	k	l	$d_{\text {obs }}$	$d_{\text {cale }}$	$I_{\text {obs }}$
0	1	1	6.14	6.145	$v w$
1	0	1	4.734	4.729	w
1	1	2	3.247	3.246	m
1	2	1	3.112	3.112	$v s$
0	2	2	3.073	3.072	s
2	0	0	2.758	2.758	$m s$
1	0	3	2.679	2.678	s
2	1	0	2.616	2.616	$v w$
1	1	3	2.549	2.547	$v w$
2	1	1	2.517	2.516	$v w$
0	0	4	2.297	2.297	w
0	4	0	2.067	2.066	$m s$
2	2	2	2.051	2.052	$m s$
0	2	4	2.008	2.008	m
2	3	1	1.906	1.907	w
1	4	1	1.895	1.893	$v w$
1	3	4	1.678	1.680	w
3	2	1	1.652	1.652	$m s$
1	4	3	1.635	1.636	m
2	2	4	1.623	1.623	w
1	2	5	1.606	1.606	m
3	0	3	1.576	1.576	$m s$
0	0	6	1.531	1.531	w
1	5	2	1.497	1.497	$v w$
0	6	0	1.377	1.377	w
2	0	6	1.339	1.339	$v w$
2	1	6	1.322	1.322	$v w$
				0	

Intensities: vs=very strong, $s=$ strong, $m=$ medium, $m s=$ medium strong, $w=$ weak, $v w=$ very weak. Wavelengths: $\mathrm{Cu} K \bar{\alpha}=1.5418, \mathrm{Cu} K \alpha_{1}=1.5405, \mathrm{Fe} K \bar{\alpha}=1.9373$, $\mathrm{Fe} K \alpha_{1}=$ 1.9360 Å
for about five days. The resulting black material looked like a coarse-grained disk with slightly rounded edges.

Fragments were chiselled out of the sintered mass. They were characterized by sharp edges and highly reflecting surfaces, although no characteristic shape could be recognized. They were inspected by means of a Laue flat camera. Precession photographs were taken with Co $K \alpha$ X-radiation. The unit cell is orthorhombic with lattice parameters $a=$ $5 \cdot 516, b=8.265$ and $c=9 \cdot 188 \AA(\pm 0.001 \AA)$ at $25^{\circ} \mathrm{C}$. Systematic extinctions occurred for reflexions 0 kl with $k+l \neq 2 n, h 0 l$ with $h+l \neq 2 n$ and $h k 0$ with $h \neq 2 n$; no extinction was observed for the general reflexions $h k l$. The space group therefore is Pnna, No. 52 of International Tables for X-ray Crystallography (1952). Assuming two formula units per unit cell the theoretical density is $4.57 \mathrm{~g} . \mathrm{cm}^{-3}$ which may be compared with the observed value of $4 \cdot 62 \mathrm{~g} . \mathrm{cm}^{-3}$ measured by pycnometry methods.

From these unit-cell dimensions and this space group it has been possible to index the powder pattern (Table 1). The observed spacings are mean values obtained with $\mathrm{Cu} K \alpha$ and $\mathrm{Fe} K \alpha$ radiations.

No further structural work on this compound is contemplated at present.

References

Barbariol, I. \& Batti, P. (1968). Univ. Trieste Ist. Chim. Appl. No. 25.
Batti, P. (1962). Ann. Chim. (Rome), 52, 1227.
DoDinh, C. \& Bertaut, E. F. (1965). Bull. Soc. franç. Minér. Crist. 88, 413.
International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.
Okazaki, C., Mori, S. \& Mitsuda, H. (1963). Acta Cryst. 16 (13), A 23.

Acta Cryst. (1970). B26, 1185
The crystal structure of KNaThF6.* By George Brunton, Reactor Chemistry Division, Oak Ridge National Labora-
tory, Oak Ridge, Tennessee 37830, U.S.A.
(Received 19 November 1969)
Crystals of KNaThF_{6} are hexagonal $P \overline{3}$ with $a_{0}=6 \cdot 3073$ (2) and $c_{3}=7 \cdot 8907$ (2) \AA. The structure of KNaThF_{6} is a framework of Na octahedra and K and Th 9-coordinated polyhedra.

The complex fluoride compound KNaTh_{6} melts incongruently to $\mathrm{Na}_{7} \mathrm{Th}_{6} \mathrm{~F}_{31}$ and liquid at $674^{\circ} \mathrm{C}$ (Brunton, Insley, McVay \& Thoma, 1965). It is uniaxias negative with $N_{O}=1.454$ and $N_{E}=1.448$.

Single crystals of KNaThF_{6} were obtained from a quench (Friedman, Hebert \& Thoma, 1962) of the stoichiometric composition. The crystals were ground to approximately spherical shape in an air driven race. An ellipsoid of the

Table 1. Atomic parameters for KNaThF_{6}
The number in parentheses is the standard error in terms of the last significant digit as derived from the variance-covariance matrix.

	x	y	z	$\beta_{11}{ }^{\text {a }}$	β_{22}	β_{33}	β_{12}
Th	3	$\frac{2}{3}$	$0 \cdot 1221$ (2)	$0 \cdot 0034$ (4)	(c)	0.0039 (3)	(c)
K	$\frac{1}{3}$	$\frac{2}{3}$	0.608 (2)	$0 \cdot 014$ (2)	(c)	$0 \cdot 004$ (2)	(c)
Na	0	0	0.236 (3)	$0 \cdot 014$ (3)	(d)		
F(1)	$0 \cdot 104$ (3)	0.381 (3)	$0 \cdot 322$ (2)	$0 \cdot 011$ (2)	(d)		
F(2)	$0 \cdot 395$ (3)	$0 \cdot 319$ (3)	$0 \cdot 097$ (2)	$0 \cdot 010$ (2)	(d)		

${ }^{\alpha}$ Coefficients in the temperature factor: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$.
${ }^{6} \beta_{13}=\beta_{23}=0$.
c $2 \beta_{12}=\beta_{22}=\beta_{11}$.
${ }^{d}$ The temperature factors for $\mathrm{Na}, \mathrm{F}(1)$ and $\mathrm{F}(2)$ were constrained to be isotropic
dimensions $0.060 \times 0.120 \times 0.120 \mathrm{~mm}$ was selected for single-crystal diffraction. The intensity data were collected with a Picker four-circle goniostat and a scintillation counter detector using unfiltered $\mathrm{Ag} K \alpha$ radiation. The linear absorption coefficient of KNaThF_{6} is $\mu=289.0 \mathrm{~cm}^{-1}$ for $\mathrm{Ag} K \alpha$ and an absorption correction was made for each reflection.
The unit-cell parameters were determined by a leastsquares adjustment of 22 high angle $\left(116^{\circ}<2 \theta<140^{\circ}\right)$ $\mathrm{Cu} K \alpha_{1}(\lambda=1.54050 \AA)$ reflections; $a_{0}=6.3073(2), c_{0}=$ $7 \cdot 8907$ (2) $\AA, Z=2$ and $\varrho=4.985 \mathrm{~g} . \mathrm{cm}^{-1}$. The diffraction symmetry is $\overline{3}$ and there are no extinction conditions. Space groups $P 3$ (143) and $P \overline{3}$ (147) are consistent with these conditions. The final structure has the space group $P \overline{3}$.

The structure was refined by iterative least-squares using a modification of the Busing, Martin \& Levy (1962) computer program. The initial z parameter for $T h$ atom at 2(d) in $P \overline{3}$ was determined from the three-dimensional Patterson function. The quantity minimized by the leastsquares program was $\sum w\left|\left|s F_{o}^{2}\right|-\left|F_{c}^{2}\right|\right|^{2}$ with weights, w, derived from the empirical equation (Brown \& Levy, 1964):

$$
\sigma^{2}\left(F_{o}^{2}\right)=\left[T+B+\{0.05(T-B)\}^{2}\right] /\left[A(\mathrm{Lp})^{2}\right],
$$

where $T=$ total counts, $B=$ background counts, $A=$ absorption correction and $\mathrm{Lp}=$ Lorentz-polarization factor. Anisotropic temperature factors were calculated for Th^{4+} and K^{+}and isotropic factors for Na^{+}and F^{-}. An extinction correction was made on F_{c} by the method of Zachariasen (1967). The scattering factors for the ions were taken from

Fig. ${ }^{-1}$. One asymmetricallunitof $\mathrm{KNaThF}_{6}^{-}{ }^{-\quad}$ one quarter cell outlined. There is a triadinversion axis parallel to the cell edge through Na and a triad axis through Th and K .

Fig. 2. One unit cell of KNaThF_{6}.

Table 2. Interatomic distances for KNaThF_{6}

$3[T h-F(1)]^{*}$	$2.28(2) \AA$	$3[\mathrm{~K}-\mathrm{F}(1)]$	$2.68(2) \AA$
$3[\mathrm{Th}-\mathrm{F}(2)]$	$2.40(2)$	$3[\mathrm{~K}-\mathrm{F}(1)]$	$2.79(2)$
$3[\mathrm{Th}-\mathrm{F}(2)]$	$2.42(2)$	$3[\mathrm{~K}-\mathrm{F}(2)]$	$2.87(2)$
$3[\mathrm{Na}-\mathrm{F}(1)]$	$2.26(2)$	$3[\mathrm{Na}-\mathrm{F}(2)]$	$2.54(2)$
$\mathrm{F}(1)-\mathrm{F}(2)$	$2.72(2)$	$2[\mathrm{~F}(1)-\mathrm{F}(1)]$	$2.86(3)$
$\mathrm{F}(1)-\mathrm{F}(2)$	$2.84(2)$	$\mathrm{F}(1)-\mathrm{F}(2)$	$2.97(2)$

* The coefficient in front of the bond denotes the number of equal bonds in the structure.

Table 3. Observed and calculated factors for KNaThF_{6}

dispersion of $\mathrm{Ag} \mathrm{K} \alpha$ radiation by thorium (Cromer, 1965). The standard deviation of an observation of unit weight, [$\left.\sum w\left(F_{o}-F_{c}\right)^{2} /\left(n_{o}-n_{v}\right)\right]^{1 / 2}=1 \cdot 377$ where n_{o} is the number of reffections and n_{v} the number of parameters. The agreement index $R=\sum| | F_{o}^{2}\left|-\left|F_{c}^{2}\right|\right| / \sum\left|F_{o}^{2}\right|$ is 0.095 for 365 independent reflections.

The refined parameters are listed in Table 1, the interatomic distances in Table 2 and the structure factor data in Table 3. Fig. 1 is a stereoscopic pair of drawings showing one asymmetrical unit of KNaThF_{6}, and Fig. 2 shows a complete unit cell. The Na polyhedron is an irregular octahedron which appears to be squashed along one of the triad axes. The Th and K polyhedra are the trigonal prisms with pyramids on each prism face typical of 9 coordination.

The Th and K polyhedra alternate with one another along the c axis and share the bases of the trigonal prisms. The K polyhedra share edges with K and Th polyhedra in adjacent columns within the unit cell. The Na octahedra tie the unit cells together perpendicular to the c axis by sharing edges with the Th and K polyhedra.

References

Brown, G. M. \& Levy, H. A. (1964). J. Phys. 25, 497. Brunton, G. D., Insley, H., McVay, T. N. \& Thoma, R. E. (1965). USAEC Report ORNL-3761, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). USAEC Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Friedman, H. A., Hebert, G. M. \& Thoma, R. E. (1963). USAEC Report ORNL-3373, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558.

Acta Cryst. (1970). B26, 1187
The crystal structure of p-sulfobenzenediazonium inner salt. By Ronald L.Sass and Jimmy Lawson, Department of Chemistry, William Marsh Rice University, Houston, Texas, U.S.A.
(Received 8 October 1969)
The crystal structure of p-sulfobenzenediazonium inner salt, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, has been determined. Observed unit-cell parameters are $a=8 \cdot 10(1), b=9 \cdot 94(1), c=9 \cdot 46(1) \AA$ and $\beta=97 \cdot 4(2)^{\circ}$. The space group is $P 2_{1} / n$. Three-dimensional visual data were collected with $\mathrm{Cu} K \alpha$ radiation. The trial structure was obtained by Patterson methods and refined to a final R of 13%.

The crystal structure of p-sulfobenzenediazonium inner salt, ${ }^{\ominus} \mathrm{O}_{3} \mathrm{~S}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{N}_{2}{ }^{\oplus}$, has been determined. Needle-like crystals of the compound about 0.2 to 0.3 mm in diameter and suitable for X-ray analysis were grown from an aqueous solution and mounted on a glass fibre. Weissenberg photographs ($\mathrm{Cu} K \alpha, \lambda=1.5418 \AA$) indicated the space group to be $P 2_{1} / n-C_{2 h}^{5}$ ($h 0 l$ absent when $h+l=2 n+1$; $0 k 0$ absent when $k=2 n+1$). Unit-cell dimensions are $a=8 \cdot 10(1)$, $b=9.94$ (1), $c=9.46$ (1) \AA and $\beta=97.4$ (2) ${ }^{\circ}$. The observed density, measured by flotation, is $1.69 \mathrm{~g} . \mathrm{cm}^{-3}$; the density calculated from the X-ray data is $1.63 \mathrm{~g} . \mathrm{cm}^{-3}$ assuming four molecules per unit cell. Multiple-film equi-inclination

Weissenberg photographs were taken about the a axis ($h=0$-6). Intensities were measured visually. The Lorentzpolarization factor was applied and the data were correlated by using a series of oscillation photographs in the usual way. No corrections were made for extinction or absorption. A total of 521 reflections in the region of reciprocal space explored had detectable intensities.

Patterson projections and the sharpened PattersonHarker section $P\left(u^{\frac{1}{2}} w\right)$ were synthesized and served to establish trial positional parameters for the sulfur atom. A fourfold sharpened superposition function based on the sulfur atom trial parameters was constructed. Although ra-

